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This paper deals with discontinuous solutions of three-dimensional prob- 
lems in the theory of ideal plasticity, for the case when the plastic 
state of stress corresponds to the edge of the prism, which interprets 

the Trescs-Saint Venant’s condition of plasticity in the space of 
principal stresses. 

It is noted that the discontinuous solutions in the theory of ideal 
plasticity were originally brought to attention by Khristianovich 11 I. 
lore recent and detailed investigations of this problem are credited to 
Sokolovskii [ 2 1 , Prager [ 3.4 1 , winzer and Carrier [ 5 1 , Lee [ 6 1 , 
Hodge [ 7 I , Hill [ 8 I, Shapiro [ 9 I, and others. 

1. Let us consider surfaces of discontinuity in axisymnetrical prob- 
lems in the theory of ideal plasticity under the condition of complete 

plasticity. Let us direct the z-axis along the axis of rotation and let 
the p-axis be perpendicular to it. Obviously, it will be sufficient to 

investigate the distribution of stresses in the pz plane. 

In this case, the Tresca-Saint Venant condition of plasticity is of 

the form 

(gp - o,)~ + 4~;~ = 4k2 JO = -+ (zp + gz) + k (1.1) 

and, therefore, the following relationships will exist: 

up = 2kw + k sin 20, %z = - k cos 20 

u, = 2kw - k sin 26, z. = 2ko + k (1.2) 

Relationships (1.1) and (1.2) are completely analogous to the corres- 
ponding relationships for the plane problem. This analog permits the 
extension of the basic relationships between stresses at the lines of 

discontinuity, which were obtained by Prager 13 1 for the plane problem, 
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to the case of axisyrnnetrical problem considered here. 

However, because of the different character of the equilibrium equa- 

tions, solutions of problems for the case of plane deformation may not 

be directly extended to the case of axisymnetrical problems. For the case 

of plane problem, equations of equilibrium represent differential rela- 

tionships which could be satisfied with any choice of constants o and 8. 

The equations of equilibrium for axisymnetrical problems 

This makes imposs- 
ible the direct extension of such results of a plane problem as a dis- 

continuous solution for a wedge, or any consequences of such a solution. 

Therefore, the problem of finding discontinuous solutions for axi- 

symnetrical problems leads to the complicated problem of matchina regions 

with variable stresses. 

Note that equations (1.3) are satisfied for a particular case when 

w = const, 8 = ;-& TrI1z (m = 0, 1, . . .) 

2. Assume that a certain surface S is a discontinuity surface of a 

stressed state. This surface S may separate states of stress corresponding 

to different edges of the prism which interprets the Tresca-Saint Venant 

condition of plasticity in the space of principal stresses. Further in 
this paper this prism will be called the Tresca-Saint Venant prism. 

Obviously, it will be sufficient to investigate the cases when on either 

side of the surface S one of the conditions 

al=a2=u8&2k (2.1) 

is satisfied, inasmuch as this may always be attained by suitable 

labelling of the principal stresses. Two basic cases will be considered 

below. First, when the discontinuity surface S separates plastic states 

of stress for which, in (2. l), the signs of the constant 2k are the same 

on either side of S. Second, the case when these signs are opposite. 

Let us investigate the first case. At a certain point of the surface 

let us define an orthogonal system of coordinates a, 0, n. The n-axis will 
be directed along the normal to the surface S. Then the axes a and 6 will 

be located in the tangent plane to the surface S. 

Consider at the same point the directions of principal stresses ul, 

o*, 03. 

The mutual orientation’of axes a, 0, n and axes 1, 2, 3, which define 
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;he directions of principal stresses, will be specified by 

cosines, which are presented in the table: 

the direction 

!I i2 I3 
11 4 4 I: 12 m2 na 

n 43 m3 n3 

Further, having related all the stress components to the constant 

+ 2k, we obtain 

ga = aI+ n12, “p = 01 + nz2, on = Gi + n,* 

Tq3 = %%?, =an = v3, 7’bn = n2n3 
where 

31 = c-i/3, Q= l/3(% + CJp + 4 

The components oc, ro,, 
S, that is 

rp,, must be continuous at the passage through 

[3J== [Tan] = [rpn] = 0 HU s (2.2) 

where a component in square brackets indicates the magnitude of its dis- 
continuity at the passage through S. 

Components ua, up rap may be discontinuous. 

Denoting by n1 = cos (bl, n2 = cos 4, n3 = cos 8, we write relation- 
ships (2.2) in the form 

5+ + co.?? 6+ = c- + cog e- 

cos ‘pi+ cos 0+ = coscpi- cos 6- oa s (2.3) 
cos ‘p2+ cos b+ = cos (p2- cos b- 

Since cas’q5, + cos2q$ = sin28, the latter two of the relationships 

(2.3), if squared and added, will yield 

sin2 26’ = sin2 20- (2.4) 

It is easily shown that the following relationships must be satisfied 
between the angles, if (2.41 holds 

Relat ionsh i 

8+= tfi-z!z~m+‘/,x 1 +b-+nm 
(m = 0, I,...) (2.5) 

- - 

ps (2.51 lead to the equality - 

cosb+ = &sin 6- ior 8+ = *O-*xm ++x (2.6) 
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and to the equality 

cos6+ =+cose- - (2.7) 

for all the remaining cases. Note that in relationships (2.51, (2.61, and 

(2.7) the signs do not correspond. These signs are easily obtained for 

each concrete case. 

It is easy to show that in case (2.7) the components oo, 08, rd are 

continuous, and a consideration of only case (2.6) will be to the point. 

Then 

cos26+ = - cos26- (2.8) 

From (2.3) and (2.6) we obtain 

It is easy to obtain 

[a] = cos 2e-, 
coscpi+ = *coscpr--ctg6- 

cos ‘Pa’ = * CO8 ‘p.J- c tg e- (2.9) 

[uo]= cos26- 1 +Ws), 
c [TqJ = cos28- 

coscpl-ws(pp' 

= cos28- 1 +g$), 
( 

sin'& 
(2.10) 

IQ1 

Let us show that if the plastic state of stress on either side of the 

surface S corresponds to one and the same edge of the Tresca-Saint Venant 

prism, only the second case should be considered in relations (2.6). 

(01 = -228_fam+~ (n&=0,1,...) 

In fact, it follows from (2.10) that for 8- = 1/4~ 

[%I = ]Ql = [‘cap1 = 0 
which indicates that there exists a continuous distribution of stresses; 

and, consequently, the third principal direction does not change its 

original orientation at the passage through the surface S. This is in 

conflict with the first relationship of (2.6) 

[e] =f&7cm (m = o,i, . ..) 

In the case when the surface S separates regions of plastic state of 

stress which correspond to different edges of the Tresca-Saint Venant 

prism, then on the contrary, in view of analogous reasoning, let us con- 

sider only the first case of relationships (2.61, while the second case 

will be omitted. 

Thence, the conditions on the surfaces of discontinuity S may be 

written in final form as 

[a] = cos26-, [',I=- _ 20-+7rm+ 4 (2.11) 

when the plastic state of stress on each side of the surface S corres- 

ponds to one and the same edge of the Tresca-Saint Venant prism, and 
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[aI = cos 2w, 

If4 = +7c*xm (2.12) 
* 

for the case when the plastic stress states (which are separated by 
face S) correspond to different edges of Tresca-Saint Venant prism. 

sur- 

Fig. 1. Fig. 2. 

If axes tz and /3 are so directed, that cos +I_ = 0, then COS*+* = 

sin*8, For such a case denote axes a and fl by x and y. ‘Ihen, fran rela- 

tionship (2.10), it follows that 

[%I = 4 [$I = 2% [Gul = 0 (a=coe2e-) 

Let + be the angle between axes a and r. We have then 

(2.13) 

=a = 3, cosa $ + av sin8 t# + 7’xy sin 29 

‘tcr8 = I/* (uv - a,) sin 25, + ‘txU co9 29 (2.14) 

From (2.13) and (2.14) it easily follows 

[o,] = a (1 + sin* $), [o& = Q (1 + cosB $), [‘cap] = asin $ cos$ (2.15) 

The change of mwitudes of discontinuities for components a2 and rd 

in the tanmtial plane to the surface S is shown in Fig. 1. Point A 
traces the curve of change of discontinuity of the carponent u2, and the 

Point B indicates the same for the canponent rg. 

Note that from (2.15) it follows that 

([%I - Pal)* + 4 PapIP = a2 

Now consider the change in orientation of the third principal direc- 
tion at the passage throu& the surface S. Fran the second relationship 

of (2.9) it is clear that cos &+ = 0 whenever cos $- = 0. Ihis indicates 

that the direction of the principal stress 03 is always situated in the 
nay plane. 
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The change of direction of the third principal stress at the passage 

throuuh the S surface is shown in FiR.2. ‘Ihe direction of the third 

principal stress is indicated by rays 04 and aB. ‘Ihe line L is the inter- 

section line of the noy plane and the surface S. If following Prayer, the 

first aud the second directions of sheari.nR are introduced in the noy 

plane, it is then easily observed that the direction of the discontinuity 

line L, in each of its points, bisects the angle famed by the inter- 
section at that point of slip lines of the first fmily. These lines are 

indicated by dotted lines in Fig.2. 

Ckmsider the second case. Assme that 

ai+ = us +=a+-_1 3 P q- = c2- = %3- + 1 
Then 

+ tam = aI+ + cos’(pI+, %op+ = cos q)l+ cos ‘pz ) . . . 
00 = 01 - COS~rpl--, %xp- = - cos pl- co9 ‘Pa-, . . . 

q+= a+-$, q- = cl- + f 

(2.16) 

FNKII the continuity condition for the components us, ran, r,gs we 
obtain 

o+ + co?+%+ = a- - COST + $ 

cos cp,+cos e- = - cos cpl_COS e- (2.17) 
cos T~+COS e+ = - cos qb2- cam e- 

Obviously,in this case too, the direction of the third principal stress 

is situated in the noy plane. 

Since sin 2 8e = sin 2 e-, the relationships (2.5) to (2.8) are valid. 

Obviously, the discontinuities arise in all the cases. 

For e+=+e-+ir+xm, cos e+ = + sin e- - 

we will have 

[a]= -$, [crar] = - 1 + -s 

[%el = 
cos ‘p1- cm ‘Pa- 

sin” 0- -’ [Q] = - 1 + -z&-g 

From (2.18) it follows that 

[%I = -1, [%I1 = 0, [Gqll = 0 
[UJ = - COSyJ, [crp] = - sin2 +, [tp] = sin II, cos + 

It is obvious that 

(2.18) 

A diagram of chane of discontinuities, analogous to the one shown in 

FiK. 1, can easily be pictured. 
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For 

we have 

6+ = +V+xm, cos e+ = - - & cos e- (2.19) 

[a] = - 2 cos2e- + $ , [a,] = - 2 (cos2 e- - cot32 ?I-) 

[T&Q] = 2 cos w- cos ‘Pa-, [U@] = - 2(cos” e- - co3 cpe-) (2.20) 

From (2.20) it follows that 

]%I = - (1 + a), [qll = - 2a, I%lll = 0 
[a,] = - 2s - (1 - a) co.?? +, [us] = - 2a - (1 - a) sin2+ 

hpl = (1 -a)sin+cos+ 

([%I - [qd2 + 4 [%q3l’d = (1 - a)* 

In this case also it is easy to imagine a picture of variation of dis- 
continuities, analogous to one showu in Fig.l. 

Note that for the case (2.19), (2.20) the direction of the third 

principal stress either does not change at the passam through the sur- 

face S, or the direction of the discontinuity line in the nay plane is 

the bisectrix of an augle which is famed by the directions of the third 
principal stress. 

Now we pass to some examples. Planes of discontinuity which separate 

regions of constant stresses are of greatest applicability for the con- 
struction of discontinuous solutions for space problems. let us develop a 

discontinuous state of stress for a four-sided pyramid whose cross- 

section perpendicular to its hei&t is a rhombus (Fig.3). 

Fig. 3. Fig. 4. 

Assume that normal stresses act on the faces of this pyramid. Introduce 
planes of discontinuity AOO, , BOO,, COO,, LX@, . Apply relationships 

(2.19) and (2.20). Identify by index (1) components in the Region ABOO,; 
use index (2) for region 

ABOO,, 

BCOO, zmd so on. Assme that within the region 
the positive siq is used for 2k in relationship (2.1); within 

the region BCOO, the negative sim will appear and so on. Hence obtain 
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=(I) = Q(Z) - 2 COSY+,) + $ , O(S) = 0((I) - 2 co.9 b(3) + f 

U(2) = U(3) + 2 COS2 e,, - $ , 0((I) = U(1) + 2 COS’8(,) - f 
(2.21) 

AddzaElationships (2.21) and considering that 8( 1) = 0( 2 1, 0~ 3~ = 

*t419 

cot32 8(l) = cos2 B(2) 

frcm which it follows that 8, z 8, and, consequently, the rhombus ABCD 
must be a square. If 2y denoted the mle between the faces ABO and 

CDO, then, as is easily seen, 

c0se =Fc0s7 (2.22) 

where the subscript for the quantity 8 is anitted. 

Assume that the faces BCO and DA0 are stress free. ‘lben u = 0 in 
the reg+ons adjacent to these faces. Using relationships (2.16 r’ , (2.20), 
(2.22) obtain the unknown value of the constant normal pressure which 

acts on faces ABO and CD0 : 

P= - 2k (2 - cos2y) 

In an entirely analogous way a pyramid with an arbitrary number of 

faces may be investigated. Following [ 5 1 , it can be shown that the number 

of intersectinK discontinuity planes at a single straight line must be 

not less than four. 

Consider an example which would generalize the familiar presentation 
of the discontinuous solution for a truncated we& [ 5 1. Imagine a four- 

sided pyramid whose cross-section perpendicular to the height is a regular 

traperiun, Fig.4. By increasing the height 00, and leaviw the contour 

ABCD unchanmd, a prism is obtained which was considered in [5 1 under 

the conditions of plane deformation. Introduce the discontinuity surfaces 

AOC,, BOO,, COO,, Doe,. Assume that the direction of the third 
principal stress in the region ABOO, is perpendicular to the face AOB. 
Direction of the third principal stress in retion ADOO, will be deter- 

mined by the conditions at the discontinuity plane. If the face ADO is 
parallel to the direction of the third principal stress, then the shear 

stresses in its plane will be equal to zero. Further, if passing throuRh 
the discontinuity plane DOO, , the direction of the third principal 
stress is parallel to the face DCO, in such a way that its prqjection 
on the ABCD plane is perpendicular to the line CB, then only normal 
stresses will act on the face DCO. Inasmuch as the stresses in the 
region ABOO, are related in an elementary manner to the stresses in the 

ad.jacent regions, it follows, assuninp: that the stresses acting on the 
face ADO are equal to zero, that the normal stresses on faces ABC and 
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DC0 may be determined. 

lhe development indicated is based am an elementary idea and is made 
possible throwh application of conditions (2.11). It leads to cumbersome 
transcendental relationships between the angles, which are characteristic 
of the pyramid, and are omitted here. 

l'he prqjection of the direction of the third principal stress on the 
ABCD plane is indicated by line EFGH in FiE. 4. 
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