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This paper deals with discontinuous solutions of three-dimensional prob-
lems in the theory of ideal plasticity, for the case when the plastic
state of stress corresponds to the edge of the prism, which interprets
the Tresca-Saint Venant's condition of plasticity in the space of
principal stresses.

It is noted that the discontinuous solutions in the theory of ideal
plasticity were originally brought to attention by Khristianovich [1].
More recent and detailed investigations of this problem are credited to
Sokolovskii [2 ], Prager [3,4 ], winzer and carrier [51, Lee [6],
Hodge [7], Hil1 (8], shapiro [9], and others.

1. Let us consider surfaces of discontinuity in axisymmetrical prob-
lems in the theory of ideal plasticity under the condition of complete
plasticity. Let us direct the z-axis along the axis of rotation and let
the p-axis be perpendicular to it. Obviously, it will be sufficient to
investigate the distribution of stresses in the pz plane.

In this case, the Tresca-Saint Venant condition of plasticity is of
the form

(30 — 92)? + 4o, = 4K° 36 = -:— (sp +32) + & (1.1)
and, therefore, the following relationships will exist:
8, = 2ko - ksin 20, Tor = — k cos 20

o, — 2ke — ksin 26, 50 = 2ke 4 k (1.2)

Relationships (1.1) and (1.2) are completely analogous to the corres-
ponding relationships for the plane problem. This analogy permits the
extension of the basic relationships between stresses at the lines of
discontinuity, which were obtained by Prager [3 ] for the plane problem,
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to the case of axisymmetrical problem considered here.

However, because of the different character of the equilibrium equa-
tions, solutions of problems for the case of plane deformation may not
be directly extended to the case of axisymmetrical problems. For the case
of plane problem, equations of equilibrium represent differential rela-
tionships which could be satisfied with any choice of constants o and 6.
The equations of equilibrium for axisymmetrical problems

Jc ot 3,—G lig? do T,
e Pz [ 6 — P2 z ez __

This makes imposs-
ible the direct extension of such results of a plane problem as a dis-
continuous solution for a wedge, or any consequences of such a solution.

Therefore, the problem of finding discontinuous solutions for axi-
symmetrical problems leads to the complicated problem of matching regions
with variable stresses.

Note that equations (1.3) are satisfied for a particular case when

o = const, 6=%iﬂm (m=0,1,...)

2. Assume that a certain surface S is a discontinuity surface of a
stressed state. This surface S may separate states of stress corresponding
to different edges of the prism which interprets the Tresca-Saint Venant
condition of plasticity in the space of principal stresses. Further in
this paper this prism will be called the Tresca-Saint Venant prism.

Obviously, it will be sufficient to investigate the cases when on either
side of the surface S one of the conditions

0 = gy = 03+ 2k (2.1)

is satisfied, inasmuch as this may always be attained by suitable
labelling of the principal stresses. Two basic cases will be considered
below. First, when the discontinuity surface S separates plastic states
of stress for which, in (2.1), the signs of the constant 2k are the same
on either side of S. Second, the case when these signs are opposite.

Let us investigate the first case. At a certain point of the surface
let us define an orthogonal system of coordinates a, 3, n. The n-axis will
be directed along the normal to the surface S. Then the axes a and 8 will
be located in the tangent plane to the surface S.

Consider at the same point the directions of principal stresses o,,

0, O3,

The mutual orientation of axes a, B, n and axes 1, 2, 3, which define
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-he directions of principal stresses, will be specified by the direction
cosines, which are presented in the table:

R
o 11 n ny
B I ms ng
n ls mg ng

Further, having related all the stress components to the constant
+ 2k, we obtain

—_ —_ 2
Sq == 0y + 1%, S = 0, + nJ?, Gp = 1 - N3
Tag = NNy, Tan = MNg, Tan = Nallg

where

5y =0—1%, o =1/3(ca + o5} 3n)

The components %1 Tan' TBn Must be continuous at the passage through
S, that is

[on] = [tan] = [tan] = 0 na S (22)
where a component in square brackets indicates the magnitude of its dis-
continuity at the passage through S.

Components Oq» 98 ToQ may be discontinuous.
Denoting by n, = cos ¢;, n, = cos ¢,, ny = cos 6, we write relation-
ships (2.2) in the form
o* 4 cos? b = 6~ 4 cos? 6~
cos ¢;" cos it = cos g, cos 6™ on S (2.3)
cos ;" cos 6" = cos @, cos b~
Since cas2q$1 + cosquz = sind, the latter two of the relationships
(2.3), if squared and added, will yield
sin2 26% = sin? 26~ (2.4)
It is easily shown that the following relationships must be satisfied
between the angles, if (2.4) holds
o+ {i 6~ 4-nm + Y,x

=01,... .
bt (m ) (2.5)

Relationships (2.5) lead to the equality __
cosb* = +-sin 87 for 6" =46 4 wm + +x (2.6)
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and to the equality
cos 6% = +4-cos b~ (2.7

for all the remaining cases. Note that in relationships (2.5), (2.6), and
(2.7) the signs do not correspond. These signs are easily obtained for
each concrete case.

It is easy to show that in case (2.7) the components G4 0B, ToQ are
continuous, and a consideration of only case (2.6) will be to the point.
Then

c08 26% = — cos 267 (2.8)

From (2.3) and (2.6) we obtain

cos ;" = -4 cos ¢, ctgb”

cos @t = 4 cos @, ctgh” (2.9)

[o] = cos 267,

It is easy to obtain

[0a] = cos 26'( 1 +M) ,

sin® 0~ _ COS ¢~ COS Pg™
_ [‘C a] = cos 20 —— (2.'10)
[op] = cos 26‘( 1+ c;f,:f_ ) , : sia’ 6

Let us show that if the plastic state of stress on either side of the
surface S corresponds to one and the same edge of the Tresca-Saint Venant
prism, only the second case should be considered in relations (2.6).

[0] = —20"tmm + 5 (m=0,...)
In fact, it follows from (2.10) that for 6~ = 1/4n
[¢a] = [731 = ["aﬁ] =0
which indicates that there exists a continuous distribution of stresses;
and, consequently, the third principal direction does not change its
original orientation at the passage through the surface S. This is in
conflict with the first relationship of (2.6)
[9]=%i1tm (m=011)~--)

In the case when the surface S separates regions of plastic state of
stress which correspond to different edges of the Tresca-Saint Venant
prism, then on the contrary, in view of analogous reasoning, let us con-
sider only the first case of relationships (2.6), while the second case
will be omitted.

Thence, the conditions on the surfaces of discontinuity S may be
written in final form as

[s] = cos 207, [0] = —20"4-=nm 4 -l; 2.11)

when the plastic state of stress on each side of the surface S corres-
ponds to one and the same edge of the Tresca-Saint Venant prism, and
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[o] = cos 267,
0] = 5+ rtm (212)

for the case when the plastic stress states (which are separated by sur-
face S) correspond to different edges of Tresca-Saint Venant prism.

Fig. 1. Fig. 2.

If axes a and B are so directed, that cos ¢~ = 0, then coszdzoz =
sin20 ", For such a case denote axes a and 8 by x and y. Then, from rela-
tionship (2.10), it follows that

[ox] =a, [oy]=2a, [ty]=0 (a = cos 267) (2.13)
Let ¢ be the angle between axes a and x. We have then

6o = 95 €OS% ¢ + oy sin® P + <, sin 2¢
Tag = /2 (0y — 0x) 8in 2¢ + T4 cos 2¢ (2.14)

From (2.13) and (2.14) it easily follows
[oal =a(1 +sin?¢), [op] =a (1l + cos?(), [rap] = asindcos (2.15)

The change of magnitudes of discontinuities for components o, and r aB
in the tangential plane to the surface S is shown in Fig.l. Point 4
traces the curve of change of discontinuity of the component ¢,, and the
Point B indicates the same for the component r aB*

Note that from (2.15) it follows that
([oa]l — [%D’ + 4 ["-'tu;!]2 = a?

Now consider the change in orientation of the third principal direc-
tion at the passage through the surface S. From the second relationship
of (2.9) it is clear that cos ¢;* = 0 whenever cos ¢,~ = 0. This indicates
that the direction of the principal stress o, is always situated in the
noy plane.
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The change of direction of the third principal stress at the passage
through the S surface is shown in Fig.2. The direction of the third
principal stress is indicated by rays (4 and OB. The line L is the inter-
section line of the noy plane and the surface S. If following Prager, the
first and the second directions of shearing are introduced in the noy
plane, it 1s then easily observed that the direction of the discontinuity
line L, in each of its points, bisects the angle formed by the inter-
section at that point of slip lines of the first family. These lines are
indicated by dotted lines in Fig.2.

Consider the second case. Assume that

ot =0 =0t —1, g9 =y =g5 + 1 (2.16)
Then
os" = o;" + cos?e,*, Tag” = cos@," cos P, ,...
Oa = 0;" —cos?p;T, Tap” = — COSP, COSP, ...
cl+=c+—%, al‘=o'+%-

From the continuity condition for the components o , r, ., 7 Bn ¥e
obtain
" + 0s%0* = o~ — cos?” + 2
cos @r'cos 6" = — cos ¢, cos 6~ (2.47)
cos @, cos 6 = — cos ¢, cos 6~

Obviously,in this case too, the direction of the third principal stress
is situated in the noy plane.

Since sin 28Y= sin 207, the relationships (2.5) to (2.8) are valid.
Obviously, the discontinuities arise in all the cases.

For 6+ = +6-+—1—ﬁ+1tm, c0os 0" = 4-sin §~
2

we will have
1

[°]=_?) [G’a]=—

[fag] = o2 P, [og] = — 1 4 220 (218)

cos?ey~
+ sin? 6-

From (2.18) it follows that
[0x] = —1, [oy] =0, [Tyl =0
[aa] = — cos®}, [oa] = — sin? §, [tap] = sin$cos
It is obvious that

([oa] — [5a])% + 4 [tap)® =1

A diagram of change of discontinuities, analogous to the one shown in
Fig.1l, can easily be pictured.
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For 6t =+ 0" 4-=m, cosb* = +cosb” (2.19)
we have
[6] = —2c0s?0” + =, [04] = — 2(cos?6” — cos®@;")
[tag] = 2 cos @, cO8 @y, [0g] = — 2(cos? 8™ — eos® @,7) (2.20)

From (2.20) it follows that

[oz] = — (1 +a), [oy]=—2a, [t] =0
[6a] = — 22 — (1 —a) cos? ¢, [op] = — 2a — (1 — a) sin*p
[tap] = (1 —a)sindcos P
([0a] —[96])* + 4 [tap]® = (1 —a)®

In this case also it 1s easy to imagine a picture of variation of dis-
continuities, analogous to one shown in Fig.l.

Note that for the case (2.19), (2.20) the direction of the third
principal stress either does not change at the passage through the sur-
face S, or the direction of the discontinuity line in the noy plane is
the bisectrix of an angle which is formed by the directions of the third
principal stress.

Now we pass to some examples. Planes of discontinuity which separate
regions of constant stresses are of greatest applicability for the con-
struction of discontinuous solutions for space problems. Let us develop a
discontinuous state of stress for a four-sided pyramid whose cross-
section perpendicular to its height is a rhombus (Fig.3).

Fig. 4.

Assume that normal stresses act on the faces of this pyramid. Introduce
planes of discontinuity AOO BOO1 COO DOO Apply relationships
(2.19) and (2.20). Identify by index (1) components in the Region ABOO, ;
use index (2) for region BCOO, and so on. Assume that within the reglon
ABOO,, the positive sign is used for 2k in relationship (2.1); within
the region BCOO1 the negative sign will appear and so on. Hence obtain
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Sa) = %@) — 2 00326(]) + % s O(3) == O(a)— 2 cos? 6(3) + % (2 21)
G(2) = 9(3) + 2 cos? 0(2) — % s O@) = %1 + 2 00820(‘) —_— ?T
Adding relationships (2.21) and considering that 0(1) = 0( ) 0(3) =
O(u) obtain

cos? 0;) = cos? ()

from which it follows that 01 - 02 and, consequently, the rhombus ABCD
must be a square. If 2y denoted the angle between the faces ABO and
CDO, then, as is easily seen,

cos8 =22 cos y (2.22)

where the subscript for the quantity 6 is omitted.

Assume that the faces BCO and DAO are stress free. Then o, = 0 in
the regions adjacent to these faces. Using relationships (2. 16)3 (2.20),
(2.22) obtain the unknown value of the constant normal pressure which
acts on faces ABO and CDO :

p = — 2k (2 — cos?y)

In an entirely analogous way a pyramid with an arbitrary number of
faces may be investigated. Following [51, it can be shown that the number
of intersecting discontinuity planes at a single straight line must be
not less than four.

Consider an example which would generalize the familiar presentation
of the discontinuous solution for a truncated wedge [5 1. Imagine a four-
sided pyramid whose cross-section perpendicular to the height is a regular
traperium, Fig.4. By increasing the height OO1 and leaving the contour
ABCD unchanged, a prism is obtained which was considered in [ 5] under
the conditions of plane deformation. Introduce the discontinuity surfaces
AOO BOO,, COO DOO Assume that the direction of the third
pr1nc1pal stress m the reglon ABOO is perpendicular to the face AOB.
Direction of the third principal stress in region ADOO will be deter-
mined by the conditions at the discontinuity plane. If t:he face ADO 1s
parallel to the direction of the third principal stress, then the shear
stresses in its plane will be equal to zero. Further, if passing through
the discontinuity plane DOO the direction of the third principal
stress is parallel to the face DCO, in such a way that its projection
on the ABCD plane is perpendicular to the line CB, then only nommal
stresses will act on the face DCO. Inasmuch as the stresses in the
region ABOO1 are related in an elementary manner to the stresses in the
adjacent regions, it follows, assuming that the stresses acting on the
face ADO are equal to zero, that the normal stresses on faces ABC and



Discontinuous solutions of space problems 8717

DCO may be determined.

The development indicated is based om an elementary idea and is made

possible through application of conditions (2.11), It leads to cumbersome
transcendental relationships between the angles, which are characteristic
of the pyramid, and are omitted here.

The projection of the direction of the third principal stress on the

ABCD plane is indicated by line EFGH in Fig. 4.
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